
PROBLEM SET 3

Learning and Memory
1 Hopfield model

Introduction

The goal of this problem set is to explore the behavior of the Hopfield model. Specifically, we
are interested in addressing several questions regarding the time it takes to recall a memory and
the sizes of basins of attraction in the Hopfield model. Make sure to download the example code
from the course website. You will modify the code to answer the questions below.

One note about the implementation–you do not have to scan parameters (like number of
patterns P, and basin of attraction size K) at a level of resolution of every P and K, as this would
take too long. Feel free to scan them at lower resolution–and also you don’t have to scan them
over the entire range–only over a range in which interesting quantities like recall probability,
overlap, and recall time vary in interesting ways. Basically, imagine that you are doing research
on the Hopfield model, and you have several hypotheses that as the number of stored patterns
increase, basins of attraction get smaller and recall probability goes down, and recall time
(conditional on successful recall) goes up. Lets say you want to present numerical evidence for
these conjectures in the form some figures for a paper. Then part of your job would be not only
figuring out what to plot (which is outlined in the different parts of the problem) but also over
what ranges and what resolution of parameters to plot at (for which we gave initial suggestions
that are most likely suboptimal). So feel free to make your own decisions about what exactly to
plot.

1.1 Basins of Attraction

First, we will investigate the basins of attraction. Recall that a basin of attraction in the Hopfield
model is set of neural activity patterns, that when set as the initial condition, all converge to the
same attractor state (Figure 1). We would like to understand properties of the basins of attraction,
because they directly correspond to how corrupt a recoverable memory can be. Here, we will
explore how big the basins of attraction are as a function of the number of patterns in the network
(P) and the amount of corruption (K).

In class, we talked through an example with only N = 3 neurons, where it was very easy to
see how “corrupted” a pattern was by counting the number of mismatched places. Here, when we
simulate larger networks, we’ll need an automatic way to quantify how close two activity
patterns u and v are. For this, we’ll use overlap, defined as 1

N ∑N
i=1uivi =1N(u1v1 +u2v2 +···+uNvN).

This is always a number between -1 and 1, where 1 indicates perfect overlap - ie. all places
match. (This measure is closely related to the pearson correlation coefficient between the two
patterns.)



Figure 1: Energy Landscape of a Hopfield Network. The memories in the network are attractor states
(local minima) of the energy landscape. Given an initial condition (e.g. a partial memory) in a particular
basin of attraction, the dynamics of the network are such that the network settles at the attractor. (Image
from Wikipedia)

A. The code fixes P random patterns stored in a Hopfield network of size N = 1000 by
defining the network connectivity (J) as the outer product of the patterns. If you run the
code, it will build the Hopfield network, initialize the network at either a random location
(if InitCondType is 1) or at a location that is K bit flips away from one of the original
patterns (if InitCondType is 2), and finally run the dynamics of the network. There is code
at the bottom that visualizes the overlap of the current network state with each of the
learned patterns. Successful recall occurs when, after running the dynamics, when the
network is attracted to one of the input patterns (one of the overlap bars should shoot up
close to 1, as in Figure 2). With InitCondType set to 2, verify that the network successfully
recalls a stored pattern (we will define successful recall if the final maximum overlap is at
least 0.9). If you increase the number of patterns, P, to 200, does the network recall the
pattern?

B. For P ranging from 20 to 600, start the network from an initial condition consisting of K bit
flips away from a randomly chosen stored pattern (InitCondType = 2) for K ranging from 1
to 500 (you don’t need to test every value in this range), and check to see if the network
goes back to the stored pattern–i.e. if the fixed point that the network arrives at has overlap
> 0.9 with the stored pattern (the variable successful recall computes this). You will have to
write your own for loops to accomplish this. You do not need to test every value of P and K
in the range–for example, you can use np.arange(20, 600, 5) to scan P from 20 to 600 in
steps of 5, for example. For K = 1, around what value of P/N does the system transition
from successful to failed recall? As K gets bigger, does this critical P/N value increase,
decrease, or stay the same?

C. For each K and P, repeat this procedure multiple times (say for ≥ 100 trials) to estimate the
probability that a network will be able to recall a stored pattern from a corrupted version.
Plot this probability as a heat map (using the imagesc or pcolor commands) as a function of
K/N and P/N. This will give you an indication of how the size of basins of attraction



shrinks as the number of stored patterns increases. Also, by plotting this in terms of the
ratios, you obtain a plot that would remain roughly invariant if you changed N.

D. Bonus: perform the same analysis for larger N (say, N = 2000). How does the capacity
change for any given fixed K? More generally, how would you expect the memory capacity
of the hopfield network to scale with the number of neurons?.

Figure 2: Successful (left) and unsuccessful (right) memory recall in a Hopfield model.

1.2 Recall probability and recall time (extra credit)

Local minima of the energy function are memories of the Hopfield network. Although our
learned (desired) patterns are local minima, there are also spurious local minima. Next, we will
look at the probability that we recall one of the original P patterns given a random initial
condition (as opposed to a spurious local minima). This is the recall probability. We will also
look at the recall time, the number of update steps required to reach one of the existing patterns.
Note that this problem is extra credit.

A. Again, we will start with P random patterns stored in a Hopfield network of size N = 1000.
For P ranging from 20 to 600, run the network multiple times (say 100 times) from a
completely random initial condition (InitCondType = 1). Record the fraction of times that
the network achieves a recall state (just like before, if the final state has a large overlap (>
0.9 in absolute value) with one of the P patterns. Plot this fraction as a function of P/N.

B. Also, plot the mean and standard deviation (across trials in which a recall state was found)
of the time (number of iterations of the dynamics) it takes to find a recall state, as a
function of P. This plot will terminate as some early value of P because at larger values,
the network will never be able to find a recall state from a random initial condition.

C. What is the relationship between the recall time and recall probability?


