
 

 

PROBLEM SET 2 

Neural coding in linear and linear-nonlinear models 

1 NEURAL CODING IN RETINAL GANGLION CELLS 

1.1 BACKGROUND 

Sensory systems do a remarkable job of extracting behaviorally relevant information from the 

environment and communicating that information to other brain regions. The field of neural coding 

explores this by asking: What information do neurons encode or represent? and How do 

biophysical mechanisms contribute to that encoding? 

We can get a handle on these questions by formulating a quantitative model that characterizes 

the relationship between the external environment and neural activity. These encoding models 

allow us to distill our understanding of a sensory system, highlight key computational features, 

tackle normative questions (e.g. optimality), and uncover biophysical limits that have shaped the 

evolution of neural circuits. 

For this problem, you will be analyzing data recorded from a salamander retinal ganglion cell 

(RGC) in response to a white noise visual stimulus. You will formulate a particular encoding model 

known as the linear-nonlinear (LN) model [2] that predicts the response of the cell to a given 

stimulus, and write code to learn the parameters of this model. You will also perform an analysis 

known as spike-triggered covariance (STC) analysis [4], to further characterize features that this 

particular ganglion cell is sensitive to. 

For starters, download the required files (RGC data and the template script) from the course 

website. All of the code you need to write will be in the rgc_analysis.m script or the python 

notebook. 

1.2 EXPERIMENT DETAILS 

The data you will be exploring is stored in an hdf5 file called rgc_data.h5 (see the template script 

for how to load this data). The data consists of a 16.67 minute recording of an OFF ganglion cell 

from the salamander retina. The stimulus was flickering white noise bars, sampled at a frame rate 

of 100Hz. The stimulus array has dimensions (30x100000) corresponding to the pixel value of the 

30 bars over 100000 frames. The time array contains the time of the stimulus presentation for 



NEPR 208 Neural coding and adaptation 

2 

each stimulus frame. Finally, the spike_times array contains the spike times of an isolated retinal 

ganglion cell (RGC) recorded in response to the stimulus. 

1.3 SPIKE-TRIGGERED ANALYSIS 

To analyze this cell, you will first need to compute the spike-triggered ensemble (STE). This is a 

matrix containing the stimulus that directly preceded a particular spike, for every recorded spike. 

Think of the STE as a cloud of points in the high-dimensional stimulus space. As we discussed in 

class, the mean of this set of points is known as the spike-triggered average. We will also 

characterize this point cloud by its covariance, this leads us to spike-triggered covariance (STC) 

analysis (see [4] for more information). 

Part 1 Spike-triggered analysis 

Loop over the set of spike times, and for each one, extract the stimulus that occurred right before 

that spike and store it in a matrix. 

1. What is the dimensionality of the spatiotemporal filter? (This is the product of the number 

of spatial dimensions and the number of temporal samples in your filter). 

2. First, you need to initialize the matrix that will store the spike-triggered ensemble (the 

variable ste in the script). 

3. Then, fill out the code in the for loop that loops over the set of spike times, and for each 

spike, store the stimulus preceding that spike in the spike-triggered ensemble (STE). Note 

that you need to flatten the stimulus to be a vector (rather than a matrix) in order to store 

it in the STE. 

4. Compute the Spike Trigerred Average (STA). Do this by taking the mean of the STE over 

the spikes dimension. This produces the average of all the spike-triggering stimuli, and 

gives us an approximate idea of the neuron’s “preferred stimulus”. 

5. The provided visualization code will generate an image of the STA. Visualize the STA, add 

appropriate labels. 

6. Describe what the spike-triggered average looks like. What does this tell you about what 

this ganglion cell encodes? 

For this part, turn in plots of the spike-triggered average. This plotting code has been 

written for you, but make sure to add appropriate axes labels and titles to the figures. 

Optional (in italics) 

1. Explore the spike-triggered covariance (STC) 



NEPR 208 Neural coding and adaptation 

3 

a. Perform PCA. The first step in any basic PCA implementation is to collect the 

data points we want to analyze. We’ve already done this by storing all spike-

triggering stimuli in the STE matrix. 

b. Next, compute the covariance matrix of this data. You can do this using the 

 
formula for covariance: 𝐶𝑜𝑣[𝑥]= 𝐸⎡⎣(𝑥 − 𝑥)(𝑥 − 𝑥)𝑇⎤⎦ , or by using the cov 

function. Note that the transpose is on the second term here, because we used 

row vectors for the stimulus in class and column vectors here. Remember to 

make sure that the dimensions of the covariance matrix are correct–it should 

be a square matrix where one side has length given by the dimensionality of 

the filter (not the number of spikes). 

c. Find the eigenvectors and eigenvalues of the covariance matrix. For this, use 
the eig function built into matlab or find the equivalent in numpy, which returns 
the eigenvectors and eigenvalues of a matrix. This is the essence of principal 
components analysis. 

d. The provided visualization code will generate an image of the STA, the 

eigenspectrum, and the STC eigenvectors. Remember, each eigenvector of 

the STC matrix is a spatiotemporal feature that has been unrolled as a vector. 

Add appropriate labels to each of these plots. 

e. PCA is commonly used to produce an approximate, lower-dimensional 

description of data by 1) expressing the data in the PCA basis, and 2) 

truncating the data to a small number of components. The eigenvalue 

spectrum (a list of all the eigenvalues) is an important tool in this process: 

recall that it tells us how much the data spreads out in each direction in 

stimulus space. Look at the eigenvalue spectrum plot generated by the code. 

If we have to discard a certain number of dimensions in stimulus space while 

keeping as much of the data’s variability as possible, which ones should we 

discard? Discarding these, how would you use the eigenspectrum plot to 

decide how good or bad this approximation is? 

f. How many eigenvalues in the eigenvalue spectrum are significant, i.e. above 

the noise floor? (you can estimate this by simple visual inspection of the 

eigenvalue spectrum, but a better approach would be to quantitatively 

estimate the noise distribution of eigenvalues by shuffling the data and 

repeating the procedure). What does this number tell you about the 

dimensionality of the subspace of stimuli that this cell is sensitive to? 

g. Describe what the eigenvectors look like. How do they compare to the STA? 

h. Computing the STC requires a lot of data. How can we be sure that we have 

computed enough to accurately estimate the STC eigenvalue spectrum? Can 



NEPR 208 Neural coding and adaptation 

4 

you describe in words (you don’t have to do it) a simple way to test if we need 

more data (without recording more data)? 

1.4 LINEAR-NONLINEAR (LN) MODELS 

In the same analysis script, you will also estimate a nonlinearity–a function that describes the 

threshold and amount of amplification necessary to best predict the ganglion cell response given 

the stimulus and the STA. To do this, you will need to do the following. 

Part 2 LN modeling 

1. First, we need to compute the linear projection (or dot product) of the stimulus onto the 

linear filter (STA) that we computed earlier. Note that you need to flatten the stimulus to 

be a vector (rather than a matrix) in order to compute this dot product. In the loop over 

time, compute the projection of each stimulus slice onto the STA and store it in the variable 

u. 

2. Now, you need to bin the spike times into an array that stores the number of spikes 

observed at a particular time, which we will call spike counts. Bin spike times using the 

bins given by the time variable. 

3. Now we are ready to compute the nonlinearity of the LN model. Remember, the 

nonlinearity is the mean number of spikes (y-axis) vs. the projection of the stimulus onto 

the STA (x-axis). Loop over discretized values of the projection (the variable ub, the 

discretization allows us to average out noise), and for each value of ub, you need to 

average the spike counts array at times where the projection happens to lie within each 

particular bin. 

For this part, turn in your plot of the estimated nonlinearity (if you use the sample code, you need 

to add axis labels and a title). Answer the following: 

1. What shape does the nonlinearity have? What does this imply about how the neuron 

responds to multiple inputs (e.g. the combination two flashes as opposed to an individual 

flash)? 

2. Estimate (just by eye) a threshold of the nonlinearity. 

3. For this stimulus, what fraction of the time is this model neuron above threshold? 

4. To fit this linear-nonlinear model, we used a stimulus with zero mean and fixed contrast. 

Natural stimuli, on the other hand, have many changes in mean luminance and contrast. 

What does this mean for our LN model? How can the LN model deal with such stimuli? 



NEPR 208 Neural coding and adaptation 

5 

REFERENCES 

[1] Blaise Aguera y Arcas and Adrienne L Fairhall. What causes a neuron to spike? Neural 

Computation, 15(8):1789–1807, 2003. 

[2] EJ Chichilnisky. A simple white noise analysis of neuronal light responses. 
Network: Computation in Neural Systems, 12(2):199–213, 2001. 

[3] Aljadeff, J., Lansdell, B. J., Fairhall, A. L., & Kleinfeld, D. (2016). Analysis of 
neuronal spike trains, deconstructed. Neuron, 91(2), 221-259. 

[4] Odelia Schwartz, Jonathan W Pillow, Nicole C Rust, and Eero P Simoncelli. 

Spike-triggered neural characterization. Journal of Vision, 6(4):13–13, 2006. 


