
Notes for Hopfield theory lecture

Shaul Druckmann

1 Signal-to-Noise Analysis of Hopfield Network
Pattern Capacity

Let us try and develop some intuition regarding the choice of the particular
shape of the connectivity matrix of the Hopfield model. Assuming a network
of size N with one memory pattern let us examine the utility of choosing the
connectivity matrix of the following form:

Jij ∝ ξiξj (1)

A minimal condition for the network to perform its function is that if the
network state is already at one of the memory patterns then it should remain
at this state. In other words, at the memory pattern, the output for each
neuron should be equal to the memory pattern. Before we do that, we need to
define the dynamics. Since we are working with binary neurons, and assuming
asynchronous dynamics:

Output(t+ 1) = sign(input(t))

Si(t+ 1) = Θ(hi(t)) ; hi(t) =
∑
j

JijSj(t) (2)

Or: ∀i : sign(hi) = ξi. Now, a minimal requirement from the Hopfield model,
as a model of associative memory, would be that if we start the network from
one of the memories, that would be the memory that is the final result of the
dynamics. Or in other words, that this network state will be stable. Let us
check this notion:

∀i : Si = ξi ⇒ Θ(hi) = ξi

hi =
∑
j

Jijξj =
∑
j

[ξiξj ]ξj = ξi
∑
j

ξjξj

= ξi
∑
j

ξ2j = ξi
∑
j

1 = ξiN (3)

Our result is that the input to the ith neuron is always of the same sign as our
one memory pattern, which means that it will always be stable. In addition, it is
of size N . The fact that the pattern is always stable is an intuitive justification
for Hopfield’s choice.
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Now consider starting from a network state that is not quite the correct
memory pattern, but a corrupted version of it. By that we mean that the
network state is equal to the memory pattern, except at a small number of
neurons, k, in which it differs. Since we are working with binary neurons,
different just means that the sign is flipped.

Si =

 ξi for i = 1...(N − k)

−ξi for i = (N − k)...N
(4)

Let us look at the dynamics again:

∀i : Si = ξi ⇒ Θ(hi) = ξi

hi =
∑
j

Jijξj =
∑
j

[ξiξj ]ξj = ξi
∑
j

ξjξj

= ξi
∑
j

ξ2j = ξi
∑
j

1 = ξiN (5)

What happens if we would like to try and store more than one memory
pattern? We extend the definition in the same manner to the following form:

Jij ∝
P∑
µ=1

ξµi ξ
µ
j (6)

We saw that in equation (3) we ended up with an input of size N . In order to
normalize this we will divide by N (not by p as would be intuitively guessed
from the sum over p). In addition, we will set the diagonal terms to zero for
reasons that will become evident in the future. Thus, our connectivity matrix
will take the form:

Jij =
1

N

P∑
µ=1

ξµi ξ
µ
j ; Jii = 0 (7)

Again, the most basic check of our model will be whether a network started
from an initial condition of one of the memory patterns, say ξνj , will be stable
for these initial conditions. Let us check:

∀i : Si = ξνi ⇒ hi =
∑
j

Jijξ
ν
j =

∑
j

[
1

N

P∑
µ=1

ξµi ξ
µ
j ]ξνj

=
1

N
ξνi
∑
j

(ξνj )2 +
1

N

∑
j

P∑
µ6=ν

ξµi ξ
µ
j ξ

ν
j =

N − 1

N
ξνi +

1

N

∑
j

P∑
µ6=ν

ξµi ξ
µ
j ξ

ν
j (8)

Where the transition that took place between the first and second line of the
equation was the splitting of the sum into the term were µ = ν and the rest of
the terms.
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The first term, which is approximately of size 1, is of the same sign as the
initial memory pattern and thus contributes towards the stability of the memory
in the ith site. Due to this beneficial property it is termed the signal term.
However, the second term can interfere with that stability and is hence termed
the noise term. What is the size of this term? It depends on the particular
choice of the sign of the neurons in the ith site in all memory patterns. Recall
that these are determined randomly. Thus, we would like to now the statistics
of the size of this term.

Importantly, though the sign of the memory patterns is a random variable,
it is not of the same type of randomness as we have previously encountered
in our stochastic analysis of neuron dynamics. The type we have encountered
was a moment to moment randomness in the transitions of the neurons from
a silent to an active state. This new type of randomness is chosen, randomly,
only once (per network) and then left constant. Random variables like these are
called quenched random variables. Their statistics in which we are interested are
statistics over all possible choices of such networks. Averaging over quenched
random variables is often denoted by double brackets <<>> as opposed to
single brackets for averaging over standard random variables. For instance,
what is the average of the sign of the ith neuron of a certain memory pattern
in the unbiased case?

<< ξµi >>= (1) ∗ (P (ξµi ) = 1) + (−1) ∗ (P (ξµi ) = −1) = 1 ∗ 1

2
− 1 ∗ 1

2
= 0 (9)

As was expected by the term unbiased. Note that these averages are exactly like
standard averages and have the same properties. Namely the two properties we
will employ:

<< X1 +X2 >>=<< X1 >> + << X2 >>

ifX1 and X2 independent : << X1 ∗X2 >>=<< X1 >><< X2 >> (10)

In other cases in the context of averaging over signs of neurons in memory
patterns we will be performing averages over vector random variables:

<< y >>=
∑

~x∈S(~x)

P (~x)y(~x) ; P (~x) = P (X1 = x1, . . . , Xn = xn) (11)

Now let us turn to calculate the average of the term we were interested in:

<<
1

N

P∑
µ6=ν

ξµi ξ
µ
j ξ

ν
j >>=

1

N

P∑
µ6=ν

<< ξµi >><< ξµj >><< ξνj >>

=
1

N

P∑
µ6=ν

0 ∗ 0 ∗ 0 = 0 (12)

Note that the transition in the first line is justified as the sign of any neuron in
a memory pattern is independent of the sign of any other neuron, both within
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the same memory pattern and between different memory patterns. The mean
of the noise term is thus zero. This is good news, but we still have to address
the other moments of the noise term. As the noise term is the sum over a large
number of random variables we can assume it is a gaussian random variable due
to the central limit theorem. Let us then calculate the variance of the noise
term:

V ar[noise] = E[noise2]− E[noise]2 = E[noise2]− 0

=<< [
1

N

∑
j

P∑
µ6=ν

ξµi ξ
µ
j ξ

ν
j ]2 >>=

1

N2
<<

∑
j

P∑
µ6=ν

(ξµi ξ
µ
j ξ

ν
j )
∑
j′

P∑
µ′ 6=ν

(ξµ
′

i ξ
µ′

j′ ξ
ν′

j′ ) >>

(13)

Can we now conclude that all the terms of the r.h.s are uncorrelated and that
it will be just a multiplication of zeros as before? No! We must remember that
the sign of a neuron in a memory pattern is correlated with itself. Thus, let us
separate the above sum into those terms where µ = µ′, j = j′ and the rest.

1

N2
<<

∑
j

P∑
µ6=ν

(ξµi ξ
µ
j ξ

ν
j )
∑
j′

P∑
µ′ 6=ν

(ξµ
′

i ξ
µ′

j′ ξ
ν′

j′ ) >>

=
1

N2
<<

[∑
j

P∑
µ6=ν

(ξµi )2(ξµj )2(ξνj )2 +
∑
j

P∑
µ6=ν

(ξµi ξ
µ
j ξ

ν
j )
∑
j′ 6=j

P∑
µ′ 6=ν 6=µ

(ξµ
′

i ξ
µ′

j′ ξ
ν′

j′ )
]
>>

=
1

N2
<<

∑
j

P∑
µ6=ν

1 >> +
1

N2
<<

∑
j

P∑
µ6=ν

∑
j′ 6=j

P∑
µ′ 6=ν 6=µ

(ξµ
′

i ξ
µ′

j′ ξ
ν′

j′ )(ξµi ξ
µ
j ξ

ν
j ) >>

=
(N − 1)(P − 1)

N2
+ 0 ' P

N
(14)

Were the last transition was justified by the fact that we will ultimately be
interested in large N and large P . In summary we find that the noise term acts

as a gaussian random variable with a mean of 0 and standard deviation
√

P
N .

Turning back to the original question of the stability of the memory pattern,
we know that the signal is of size 1 and we know the statistics of the noise
term. Thus, we can calculate the probability of the noise term destabilizing the
ith neuron. If the memory pattern sign is positive then in order for the noise
term to flip the sign it has to be lesser than -1. If the memory pattern sign
is negative it has to be greater than 1. Note that due to the symmetry of the
gaussian distribution we can consider just one of these cases. Let us consider
that of the positive memory sign. In order for the memory to be stable we need
the noise not to be lesser than 1, or just greater than 1. Let us calculate this
probability:

P (stability) =
1√

2πσ2

∫ ∞
−1

exp
(
− x2

2σ2

)
dx =

1

2

[
1 + erf

(√ 1

2σ2

)]
(15)
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We will now use the following approximation for the error function:

erf(x) ≈ 1− 1√
πx
e−x

2

(16)

Plugging it in we get:

P (stability) =
1

2

[
1 + erf

(√ 1

2σ2

)]
=

1

2

[
1 + 1− 1√

π

1√
1

2σ2

exp
(
−
√

1

2σ2

2)]

= 1− 1

2

1√
π

√
1
1

2πσ2

exp
(
− 1

2πσ2

)
= 1− 1

2

1√
π

√
2σ2exp

(
− 1

2σ2

)
= 1− σ√

2π
exp

(
− 1

2σ2

)
(17)

This is the probability of stability, the probability of instability is the comple-
mentary probability:

P (instability) = 1− P (stability) = 1−
[
1− σ√

2π
exp

(
− 1

2σ2

)]
=

σ√
2π

exp
(
− 1

2σ2

)
(18)

This is the probability of a single neuron being unstable and ultimately yielding
the wrong sign, or an error. The mean number of errors can be empirically
approximated simply by the number of neurons times the probability of an
error in each individual neuron:

Nerror = NP (instability) = N
σ√
2π

exp
(
− 1

2σ2

)
(19)

We are interested in seeing when we will have exactly one error:

1 = N
σ√
2π

exp
(
− 1

2σ2

)
⇒ ln

[
1
]

= ln
[
N

σ√
2π

exp
(
− 1

2σ2

)]
0 = ln(N) + ln(σ)− 1

2
ln(2π)− 1

2σ2
⇒ N

2P
= ln(N) + ln(

P

N
)− ln(2π)

2
(20)

Where in the last transition we plugged in our previous calculation regarding
the noise, namely that σ2 = P

N . Now we will leave only the leading terms. We
are interested in cases were N is large and P is large but smaller than N. Thus,
we will eliminate the second and third terms of the r.h.s of the final equation as
they are smaller than the remaining two terms. Thus, we end up with:

N

2Pmax
= ln(N) ⇒ N

2
= Pmaxln(N) ⇒ Pmax =

N

2ln(N)
(21)

This is the estimate, based on statistical signal-to-noise analysis, of the maximal
number of memory patterns one can embed in an unbiased Hopfield network.
Note that this number grows with N (as N is larger than ln(N)) but it is a
slightly disappointing result that the number of memory patterns that can be
embedded grows not even linearly in N.
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